Deep Belief Nets in C++ and CUDA C: Volume 3. Timothy Masters

Discover the essential building blocks of a common and powerful form of deep belief network: convolutional nets. This book shows you how the structure of these elegant models is much closer to that of human brains than traditional neural networks; they have a ‘thought process’ that is capable of learning abstract concepts built from simpler primitives. These models are especially useful for image processing applications.

ПРИСОЕДИНЯЙТЕСЬ 343 Просмотры
Image

At each step Deep Belief Nets in C++ and CUDA C: Volume 3 presents intuitive motivation, a summary of the most important equations relevant to the topic, and concludes with highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards. Source code for all routines presented in the book, and the executable CONVNET program which implements these algorithms, are available for free download.

What You Will Learn

Discover convolutional nets and how to use them

Build deep feedforward nets using locally connected layers, pooling layers, and softmax outputs

Master the various programming algorithms required

Carry out multi-threaded gradient computations and memory allocations for this threading

Work with CUDA code implementations of all core computations, including layer activations and gradient calculations

Make use of the CONVNET program and manual to explore convolutional nets and case studies

Who This Book Is For

Those who have at least a basic knowledge of neural networks and some prior programming experience, although some C++ and CUDA C is recommended.

 

Скачать книгу можно бесплатно по данной ссылке: Скачать


Ваша реакция?

0
LOL
1
LOVED
0
PURE
0
AW
0
FUNNY
0
BAD!
0
EEW
0
OMG!
0
ANGRY
0 Комментарии

  • Deep Belief Nets in C++ and CUDA C: Volume 3. Timothy Masters
  • Владимир Петров